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EXECUTIVE SUMMARY 

The main objective of this research project is to develop data-driven traffic prediction and 

control algorithms for congestion management of diverging diamond interchanges (DDIs) and 

their surroundings. The secondary goal is to report the research findings of the project to the 

Georgia Department of Transportation (GDOT) and disseminate them to the transportation 

research community, as well as the general public, through various publications and 

communication channels. Research objectives were achieved by undertaking the following tasks: 

I. Literature survey. 

II. Modeling and data analysis. 

III. Algorithm development. 

IV. Simulated testbed for algorithm training and evaluation development. 

V. Interactive web engine decision support tool construction. 

TASK I: LITERATURE SURVEY 

A thorough literature review was conducted to survey the state of the art of the current research 

on DDIs and traffic control schemes with a special focus on DDIs. The purpose of Task I was to 

help shape the scope and direction of the research in this project so that it would add the most 

value to the existing knowledge. The research team especially focused on two areas during the 

literature review: 

•  Best practice reports developed by state DOTs, which help home in areas that other 

DOTs have found challenging or difficult.  
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• Theoretical findings that have been published recently at venues such as Transportation 

Research Board (TRB) annual meetings.  

Such a focus on the most recent research helped this project pursue truly novel directions and not 

cover existing results, while allowing the researchers to thoroughly examine and adopt any that 

were promising. According to this literature survey, the most common challenges reported by 

other DOTs and the current literature are the following: 

• Challenges posed by proximity to adjacent intersections – Near-by intersections have 

been found to hinder the ability of the DDI to process traffic as efficiently as intended. 

Moreover, the mismatch in traffic processing efficiency between the DDI and adjacent 

intersections can result in queue spillbacks and demand starvations, and, therefore, can 

present increased operational challenges at the adjacent intersections upstream and 

downstream. 

• Unique features of individual DDIs – DDIs have unique features and characteristics, 

including multimodal considerations, safety performance, operations, geometric design, 

spatial requirements, constructability, and maintenance. Therefore, a one-size-fits-all 

timing plan may be impossible.  

• Adjusting signal timings – Currently, field engineers must manually adjust the signal 

timings since software tools, such as Synchro®(manufactured by CUBIC Trafficware), 

prove to be inefficient for this purpose. Rigorous studies on signal phasing schemes are 

needed in order to provide practitioners in the field with guidance to adjust signal 

timings. DDI studies in transportation literature are scarce; most focus on performance 
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evaluation of newly constructed DDIs, while the studies on signal phasing schemes are 

especially sparse. 

TASK II: MODELING AND DATA ANALYSIS 

Eight months of data were collected for two signals within the Norcross, Georgia, DDI at Jimmy 

Carter Blvd. (signal 1663, signal 1664) and two adjacent signals, one upstream and one 

downstream (signal 1662, signal 1665). Then, a thorough data analysis was conducted to extract 

traffic trends, as well as to construct data-driven models that can make predictions on future 

traffic flows. The purpose of Task II was to build the foundation for the development of a traffic 

predictive control algorithm. The information extracted and the models developed from data 

during this task were in Task III (algorithm development) for synthesizing algorithms that 

coordinate mainline traffic with downstream intersections and freeway exit ramp traffic. The 

following goals were accomplished during this task: 

• Principal component analysis (PCA) was performed to detect anomalies in traffic trends. 

PCA is a powerful data visualization technique that helps extract the outliers in a large 

data set. This analysis tool was used to separate the days for which traffic trends are 

drastically different from the usual patterns and exclude them from the historical data 

later used to construct data-driven models. Also, analyzing the unusual flows and their 

characteristics helps determine how to adjust the signal timings when such trends are 

detected again in the future. The results demonstrated that the method was able to extract 

important features and characteristics of the traffic flow and detect anomalous trends 

effectively. 
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• Models were constructed from historical data using SIMPLS regression, which is an 

advanced regression method, and the technical methodology of which is detailed in this 

report. Utilizing the SIMPLS models, the research team was able to predict the afternoon 

and evening traffic from the morning data. However, the model parameters can be easily 

adjusted depending on the prediction time selected by the practitioner; thus, making 

predictions on new intersections and over different time periods is easily implementable 

by these methods. Being able to predict the future traffic flow helps traffic engineers to 

adjust the time-of-day (TOD) plans accordingly, as well as prepare for necessary 

arrangements if the prediction indicates that congestion is imminent. The algorithm used 

was able to make excellent predictions that match extremely well with the actual traffic. 

• Optimal time segmentation of the daily traffic data was performed by dynamic 

programming. This process helped the researchers identify the optimal switching times 

between the TOD plans. This method allows the practitioner to select whether to 

prioritize the arterial traffic or the off-ramp traffic, depending on their respective 

volumes, and time segmentation is performed accordingly. Moreover, predicted future 

traffic flows can be incorporated into time segmentation to inform the practitioner when 

to continue with the current timing plan and when to adjust the switching time. 

TASK III: ALGORITHM DEVELOPMENT AND ALGORITHM IN PSEUDOCODE 

The information extracted and the models developed from Task II were used for synthesizing 

algorithms that coordinate mainline traffic with downstream intersections and freeway exit ramp 

traffic. During Task II (modeling and data analysis), the research team identified the issue that 

the turning movement count data obtained from GDOT’s Automated Traffic Signal Performance 

Measures (ATSPM) website were highly corrupted. Therefore, the SIMPLS model constructed 
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during that task needed to be robustified against corruption in data. During Task III, the team 

developed a new data-driven traffic prediction algorithm—dubbed Robust SIMPLS—which 

performs well even with corrupted training data. The algorithm was first developed in 

pseudocode and subsequently coded in MATLAB®. 

TASK IV: SIMULATED TESTBED FOR ALGORITHM TRAINING AND 

EVALUATION 

To evaluate the Robust SIMPLS algorithm, a simulation testbed was developed using Synchro 

and SUMO (Simulation of Urban Mobility) software. The purpose of the simulation environment 

was twofold; it was intended to train the algorithm using different traffic demand profiles and to 

test the effectiveness of the recommendations made by the algorithm. Historical data from 

GDOT’s ATSPM website were used to train the prediction algorithm. In simulated scenarios 

where intervention was recommended by the prediction algorithm, SUMO was used to 

demonstrate how altering the signal timings and ramp metering would increase efficiency at the 

interchange and neighboring intersections. To evaluate the algorithm, the team decided to focus 

on the DDI located at the I-285 interchange with Ashford Dunwoody Rd. and the neighboring 

signals. GDOT provided the research team with Synchro files for several DDIs in the state of 

Georgia, including the one at I-285 and Ashford Dunwoody Rd. These Synchro files contained 

important data regarding the geometry, phasing, and signal plans of intersections within and 

surrounding the interchange. Based on the software’s simulation capabilities, the research team 

decided to use SUMO, an open-source, microscopic traffic simulator, rather than Synchro to test 

the algorithm. The team discovered, however, that there is not a straightforward way to import 

data from Synchro to SUMO. Thus, conversion files and scripts were created to convert the 

Synchro geometry and phasing data from Synchro to SUMO. After incorporating geometry, 
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phasing, volume, and detector data, some issues remained with the simulation, and the research 

team had to manually tweak some factors, such as road priorities and allowable U-turns, to 

accurately simulate real-world conditions at the DDI. Ultimately, the research team was able to 

successfully create a simulation environment for the I-285 and Ashford Dunwoody Rd. DDI in 

SUMO by converting the geometry and phasing files from Synchro to SUMO. The team was 

also able to convert available turning count movement data into vehicle routes that were required 

by SUMO. At this point, the research team was prepared to test and train the prediction 

algorithm using different traffic demand profiles. 

TASK V: INTERACTIVE WEB ENGINE DECISION SUPPORT TOOL 

This project involved the optimization of traffic flow at diverging diamond interchanges with 

ramp meters and neighboring intersections. The goal was to demonstrate the feasibility of a 

decision support tool that can notice unusual trends in the flow and notify GDOT that signal 

timing adjustments may be needed now or in the future; for example, an unusual morning peak 

period traffic profile may indicate to expect an unusual evening peak period profile. The utility 

of human–algorithm collaboration in traffic engineering is paramount. In an effort to close the 

gap between humans and computers in this collaboration, the research team devised a prototype 

web engine that integrates the productivity of algorithmic predictions with human oversight and 

decision-making. The functionality of the web engine is as follows: 

1. The engine reads incoming traffic data from a network of intelligent infrastructure. 

2. Then, data-driven algorithms provide predictions of future traffic flows/level of service 

across the network. 
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3. Lastly, the results of these predictions are displayed in a graphical user interface for use 

by traffic engineers. Suggestions for updated timing schemes and alerts are provided in 

this interface, if necessary.  
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 INTRODUCTION 

Diverging Diamond Interchanges (DDI) are a relatively new interchange design that moves 

traffic to the opposite side of the road at a freeway underpass or overpass, allowing vehicles to 

enter and exit the freeway via unimpeded left-hand turns. This arrangement improves safety, as 

vehicles do not need to turn left against oncoming traffic to enter the freeway, and has the 

potential to improve mobility, as this configuration requires only two two-phase traffic 

intersections. Since its introduction, both safety and mobility ramifications have been studied in 

simulation and, to a lesser extent, in theory. Since the concept of DDI itself is relatively new, the 

research devoted to the operational strategies of DDI’s is few and far between. The main 

objective of this project is the optimization of traffic flow at diverging diamond interchanges 

with ramp meters and neighboring intersections. The primary goal is to develop data-driven 

traffic prediction and control algorithms for congestion management of diverging diamond 

interchanges (DDIs) and their surroundings. The secondary goal is to report the research findings 

of the project to the Georgia Department of Transportation (GDOT) and disseminate them to the 

transportation research community, as well as the general public, through various publications 

and communication channels. Research objectives were achieved by undertaking the literature 

survey, modeling and analysis, algorithm development and simulated testbed development for 

algorithm training and evaluation. An interactive web engine is also constructed to serve the 

practitioners as a decision support tool. This report is organized as follows. The literature survey 

is presented in Chapter 2. In Chapter 3, the modeling and data analysis, such as the methodology 

on the anomaly detection and traffic prediction, are discussed. In Chapter 4, the traffic prediction 

algorithm is robustified against high energy one-off errors and noise in the data, and the final 

traffic prediction algorithm is presented in pseudo code. Chapter 5 discusses the development of 
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a simulated testbed in Synchro/SUMO simulation for the algorithm. Development of the web 

engine decision support tool is presented in Chapter 6. 
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 LITERATURE SURVEY 

During Task I, the first 4 months of the project, a thorough literature review was conducted to 

survey the state of the art of the current research on diverging diamond interchanges (DDI) and 

traffic control schemes—with a special focus on DDIs. The purpose of this task was to help 

shape the scope and direction of the research in this project so it will add the most value to the 

existing knowledge. The researchers particularly focused on two areas during this literature 

review. The first area was best practice reports developed by state Departments of 

Transportation. This review helped home in on areas that other DOTs have found challenging or 

difficult. The second area was theoretical findings that have been published recently at venues 

such as Transportation Research Board (TRB) annual meetings. This focus on current research 

helped ensure that this project pursued truly novel directions and did not cover existing results, 

and it allowed the researchers to thoroughly examine and adopt existing results that are 

promising. According to the literature survey, the most common challenges reported by other 

DOTs and the current literature are the following: 

• Proximity to adjacent intersections – Near-by intersections have been found to hinder the 

ability of the DDI to process traffic as efficiently as intended. Moreover, the mismatch in 

traffic processing efficiency between the DDI and adjacent intersections can result in 

queue spillbacks and demand starvations and, therefore, can present increased operational 

challenges at the adjacent intersections upstream and downstream. 

• Unique features of individual DDIs – DDIs have unique features and characteristics, 

including multimodal considerations, safety performance, operations, geometric design, 
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spatial requirements, constructability, and maintenance. Therefore, a one-size-fits-all 

timing plan may be impossible. 

• Signal timing adjustments – Currently, field engineers need to manually adjust the signal 

timings since software tools, such as Synchro®, prove to be inefficient for this purpose. 

Rigorous studies on signal phasing schemes are needed in order to provide practitioners 

in the field with guidance to adjust signal timings. DDI studies in transportation literature 

are scarce; most studies on DDI focus on the performance evaluation of newly 

constructed DDIs, while the studies on signal phasing schemes are especially sparse. The 

literature survey has been divided into five sections: (1) DDI state of the art, where the 

experiences of other DOTs with DDI are presented with a focus on some of the nation’s 

first DDIs; (2) operational evaluation studies, where a summary of studies on DDI 

performance evaluated by state agencies, as well as reported in academic literature, is 

presented; (3) signal timings, where a summary of proposed signal timings for DDIs 

reported in the literature are surveyed; (4) safety, where a summary of safety-related 

issues regarding DDIs that are reported in the literature, as well as the literature on safety 

evaluation of DDIs, are presented; (5) miscellaneous, where a summary of notable studies 

that do not fit into any of the first four categories is presented. 

DDI STATE OF THE ART 

In 2009, the first DDI in the United States was built at the intersection of Interstate 44 and 

Missouri Route 13 (I-44 and MO-13) in the state of Missouri. In 2010, two more DDIs were built 

in Missouri, while Tennessee and Utah each built one DDI in their own state.[1] By 2014, 

Missouri led in the number of DDIs with a total of 13 built or planned, while Utah followed, 

having a total of 6 DDIs within the state. By 2014, 16 states had built or planned at least 1 DDI. 
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The state of Georgia’s first DDI was built in 2012 in Atlanta at I-285 and Ashford Dunwoody 

Rd. In 2013, another was built at I-85 and Pleasant Hill Rd. as the second DDI in Georgia. 

Currently, there are six active DDIs in Georgia: 

• I-285 and Ashford Dunwoody Rd. 

• I-85 and Pleasant Hill Rd. 

• I-75 and Wade Green Rd. 

• I-75 and Windy Hill Rd. 

• I-95 and SR 21. 

• I-85 and SR 140/Jimmy Carter Blvd. 

Experience of the First DDI in the United States 

The DDI at I-44 and MO-13 in Spring Field, Missouri, was the first intersection of its type 

constructed in the United States. In February 2011, a post-construction performance evaluation 

report was published on the nation’s first DDI.[2] In that report, the DDI’s performance was 

evaluated by assessing three criteria: (1) traffic operations (2) safety, and (3) public perceptions. 

Traffic Operations 

The main takeaway from the 2011 evaluation report is that the DDI exhibits the potential for 

better management of increased traffic volumes compared to a conventional diamond 

interchange. This prediction is based on the observations during peak travel periods or when an 

over-dimension load negotiated the DDI. The recovery from traffic backups created by these 

conditions were normally eliminated within one to two signal cycle lengths. Over-dimension 

loads up to 18 ft wide and 200 ft long successfully moved through the DDI. It was also observed 

that left-turn movements within the DDI experienced a noticeable decrease in traffic delay and 
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traffic queuing. Through movements within the DDI experienced a slight increase in travel time 

in part due to the slow speed through the crossover areas during off-peak periods. However, the 

overall traffic flow through the DDI was concluded to be better. 

Safety 

Safety conclusions included the following. Total crashes were down by 46 percent in the first 

year of operation. Left-turn crashes were eliminated, and left-turn right-angle crashes were down 

72 percent due to the way the left turns are handled within the DDI by free-flow movements or 

yield control. Rear-end crashes were down slightly as a result of how left turns are handled. The 

DDI’s post-construction crash types were similar to any other signalized intersection, and no 

definite crash pattern was noticed. Therefore, the first DDI’s operation was concluded to be safe, 

with a decrease in total crash number and no increase in any specific crash pattern attributed to 

the DDI. 

Public Perception 

The stakeholders considered in evaluating public perception included the general public, 

pedestrians, and operators of bikes and larger vehicles. A very high percentage (80 percent plus) 

of the general public expressed that traffic flow had improved and traffic delay had decreased. A 

very high percentage (87 percent) expressed that crashes were more likely to occur within a 

standard diamond when compared to a DDI. A very high percentage (around 80 percent) 

expressed that larger vehicles and pedestrian/bike movements through the DDI were better or 

similar to a standard diamond interchange. A very high percentage (91 percent) expressed good 

understanding on how the interchange operated with the current design of islands, signing, 

signals, and pavement markings. 
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Missouri’s Experience 

In May 2010, the Missouri DOT (MoDOT) released a document entitled Missouri’s Experience 

with a Diverging Diamond Interchange: Lessons Learned.[3] In this document, MoDOT reported 

that even though a DDI is not specifically designed to accommodate oversized loads, it operates 

well and is flexible for the navigation of oversized vehicles. It was observed that if the load can 

maneuver through a standard diamond interchange, it is able to maneuver through a DDI. 

Oversized loads can be guided through by special accommodations, such as stopping other traffic 

to allow the load to move through or allowing it to use multiple lanes to maneuver. A super load 

is defined as any vehicle that exceeds 16 ft in height and width and 150 ft in overall length and 

160,000 gross pounds. In Missouri, usually the arms of the super load are temporarily removed 

and replaced after the load has moved through the intersection with coordination by a certified 

signal contractor. MoDOT recommends structural analysis and a feasibility study for moving 

through super loads above 160,000 lb. In Missouri, signal heads are designed to be 16 ft above 

the pavement, and, therefore, signalized intersections can accommodate all other vehicles except 

super loads. MoDOT cautions that when the cross route passes over, DDIs can present 

complications for routing over-height loads past bridges with vertical height restrictions that span 

a limited access highway because the configuration of the ramp movements does not allow for 

reentry to the limited-access highway at the ramp termini. 

MoDOT observed that when signaling the off-ramp lefts, the clearance intervals for the 

crossover throughs can become long, especially if the distance between the crossover 

intersection and “distance to clear” of the off-ramp left turns is significant. This increases the 

yellow and all-red intervals. Moreover, MoDOT reported that placing the pedestrian 

accommodations in the middle of the cross route and running pedestrian phases concurrently 
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with nonconflicting vehicle phases can help with achieving shorter clearance intervals. 

According to MoDOT, the use of two controllers is recommendable in the case of an expansion 

of the interchange, for example, the addition of an off-ramp turn lane, since this can require that 

more phases be added. Moreover, two controllers may be the only option if there is a voltage 

drop due to the distance from the farthest signal head or the detecting device to the signal 

cabinet. However, using only one controller also offers advantages, such as elimination of 

communication issues between the two controllers, ensuring the two through movements 

approaching the DDI on the cross route are never on at the same time. Therefore, MoDOT 

recommends a careful consideration of deploying one controller versus two controllers 

depending on what movements are being signalized. Using software such as Synchro to optimize 

the signals for the DDI has proven inefficient for MoDOT; therefore, currently the signal timing 

is optimized manually. 

PERFORMANCE EVALUATION STUDIES 

Since DDIs are relatively new structures, studies on evaluation of the operational performance of 

the newly constructed DDIs have emerged. In most studies, the performance is evaluated based 

on the number of stops, total green time, approach capacity, and critical lane volume. Hunter 

et al. recently conducted one of these studies on the operational performance of DDIs in the state 

of Georgia.[4] Their study included a sensitivity analysis of conventional diamond interchange 

(CDI) and DDI operational performance under various interchange lane configurations, 

including the selected study area of the I-85 and Jimmy Carter Blvd. interchange in Norcross, 

Georgia, under varying traffic demands and turn-movement ratios. The study sought to 

determine conditions in which one interchange configuration provides superior performance over 

the other. In that study, the sensitivity analysis was structured into a two-step process with a 
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critical lane volume (CLV) analysis as the first step, followed by a VISSIM microscopic 

simulation study as the second step. Hunter et al. concluded that a CDI is likely to be the 

preferred option at locations with traffic volumes well below capacity and cross-street left-turn 

traffic proportions below 30 percent of the total cross-street demand, and a DDI is likely to be 

preferred at locations with traffic volumes near capacity and cross-street left-turn proportions 

exceeding 50 percent of the total cross-street demand. 

The unique geometry of DDI design allows for extra flexibility in signal phasing schemes—

particularly with the two-phase operation, using overlaps best leverages the full power of the 

DDI’s merit. In most two-phase operations, internal queue is allowed. Therefore, Pang et al. 

argued that the conventional capacity calculation methods may not be appropriate for the DDI if 

the effects of the internal queue need to be considered.[5] Pang et al. investigated the approach 

capacity of DDIs, including the effect of internal queue. They developed a method to calculate 

the approach capacity of the DDI by using an analytical model that would consider the impacts 

of the internal queue on the traffic progression of either arterial roads or freeway ramps. They 

demonstrated that the model can be used to reliably calculate lost green time of traffic 

movements of the DDI. A similar method documented in chapter 22 of the Highway Capacity 

Manual 2010 (HCM 2010) was also designed to calculate the lost green time of signalized 

interchanges due to the impact of an internal queue.[6] Pang et. al, concluded that the HCM 2010 

method is not appropriate for DDIs because the movements feeding into the internal space of a 

DDI are significantly different from the movements of a conventional signalized interchange. 

Other simulation studies have aimed to determine if a DDI is suitable to replace an existing CDI 

in the same location. A case study was conducted by Khan et al. for an interchange in Athens, 

Alabama.[7] The existing interchange was a conventional diamond interchange that was 
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compared with a DDI built at the same location by using Synchro/SimTraffic® as a simulation 

tool. The analysis focused on determining the level of service and vehicle delay for the two 

interchange types. Based on simulations in their study, DDI performed better than CDI in only 

four special cases and, therefore, it was concluded that a DDI is not an appropriate replacement 

for the current CDI network for the study area. 

Still, other simulation studies have evaluated the performance of signal phasing schemes of 

DDIs. For example, Warchol et al. investigated the influence of crossover spacing and increased 

volumes on the performance of DDI phasing schemes using PTV Vistro® software and the 

dynamic bandwidth assessment tool to optimize the split, cycle length, and offset.[8] Mean 

interchange delay and mean stops per vehicle were selected as measures of effectiveness. It was 

concluded that a two- or three-critical-movement phasing scheme usually resulted in the lowest 

mean interchange delay and the fewest stops. Overall, the results provide an initial signal timing 

scheme for practitioners.  

Finally, some studies point out inherent inefficiency that resulted from two-phase configuration 

reflecting the two competing movements at the crossover points at each intersection of the DDI. 

Hainen et al., for example, identified the issues as: (1) the potential for internal queuing, and 

(2) the challenges faced when the inflow demand exceeded the outflow capacity of the 

interchange.[9] They used high-resolution event data to develop performance measures to 

evaluate operations at a DDI in Salt Lake City, Utah. Their study investigated alternatives to the 

existing signal timing with the two-phase configuration, and then developed and deployed a new 

three-phase configuration. This three-phase configuration was found to address the internal 

queuing that occurs with two-phase timing. Under this new configuration, the flows from one 

DDI intersection to the other were balanced, and progression within the DDI was improved. The 
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study found that with the three-phase configuration, the percent of vehicles arriving on green at 

the heaviest internal movement within the DDI increased from 53 to 92 percent.  

Several additional studies on performance evaluation of DDIs that the current research team 

surveyed include references 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, and 25. 

SIGNAL TIMING 

As the popularity of DDIs as the interchange of choice grows, the ability to provide practitioners 

in the field with guidance on signal timing adjustments becomes increasingly important. As 

several methods of timing schemes are being proposed in the literature, it becomes necessary to 

document the state of the practice in DDI signal phasing with principles established in the Signal 

Timing Manual.[26] Cunningham et al. documented three fundamental phasing schemes where 

each scheme was described with a consistent naming convention.[27] It used consistent phase 

numbering in a logical format to describe each of the phasing concepts being considered and 

discussed. The study also addressed the use of actuation and barriers to improve coordination, 

methods for reducing lost time, and issues relating to preemption and pedestrians to provide 

practitioners with basic guidance on when one phasing scheme may be more appropriate than 

another. 

One of the key factors in enhancing the operating efficiency of DDI is being able to successfully 

coordinate the DDI along with neighboring intersections in an arterial. One of the studies that 

focused on this issue was conducted by Day and Bullock.[28] Their study examined three 

different cycle length strategies for DDI coordination: (1) using the full cycle length of the 

corridor; (2) using a half-cycle; and (3) using a previously described three-phase scheme 

intended to manage queues within the DDI. Through a microsimulation study, six different 
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origin–destination (O–D) scenarios were tested and the results were presented in terms of the 

number of stops, movement delays at the DDI, queue lengths, and delay by O–D path. The 

results of the study indicate that the half-cycle and full-cycle strategies have both advantages and 

disadvantages. The half-cycle strategy yielded lower total and average delays but resulted in 

more stops along the arterial and higher arterial O–D path delays. On the other hand, the full-

cycle option achieved fewer stops and lower delays for arterial routes, while it increased total 

and average delays for other movements. The study found that the three-phase strategy often 

reduced delays and queue lengths for the arterial movements exiting the DDI but increased those 

of other movements. 

Other studies extended the optimization of the offset of signalized arterial using the Link Pivot 

algorithm to arterials with single-controller DDI. Day et al., for example, sought to optimize a 

DDI within an existing system to ensure smooth corridor operation, and their study presented a 

methodology for optimizing offsets on a corridor, including a single-controller DDI.[29] This 

methodology uses high-resolution controller data and an enhancement to the Link Pivot 

algorithm that deconstructs the single-controller parameters into equivalent offset adjustments. 

Day et al. demonstrated their methodology by applying it to a five-intersection arterial route that 

included a DDI and assessing the outcomes by measurement of travel times by Bluetooth vehicle 

re-identification. A user benefit methodology was applied to the travel time data that considered 

the reliability of the travel times in addition to the central tendency, as well as to O–D paths that 

travel to and from the freeway in addition to routes along the arterial. The study reported a total 

annualized user benefit of approximately $564,000. 

Some studies suggested that the relationship between the crossover spacing and the signal offset 

need to be better understood. Cheng et al. pointed out that in the design of DDI, the two critical 
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and interdependent design components—crossover spacing and signal offsets—have not been 

addressed in most design guidelines.[30] The estimated travel time between a DDI’s two sub-

intersections for all movement paths is essential for the design of signal offsets. Also, the 

crossover spacing needs to be designed to accommodate queues comprising mostly those 

vehicles not moving within the signal progression band, which is often designed with a given 

crossover spacing. Therefore, those authors proposed concurrent optimization of these two vital 

DDI design elements at the planning level. They conducted a case study at a DDI site with the 

proposed model to justify the necessity to perform the concurrent optimization under different 

operational conditions. They concluded that the design with the optimized crossover spacing and 

offset can yield the shortest total delay and the least number of stops for vehicles over the entire 

network, especially under near-saturated conditions. The study also found that the optimized 

crossover spacing can also prevent the formation of queue spillover across the crossovers in a 

DDI.  

Other studies on signal timing optimization that the current research team surveyed include 

references 31, 32, 33, 34. 

SAFETY 

In addition to operational efficiency and signal timing optimization studies, research efforts have 

been devoted to safety evaluation studies. Claros et al. conducted a formal safety evaluation at 

the project level (i.e., interchange) and the site-specific level (i.e., ramp terminals) of DDIs.[35] 

The investigators used three types of before–after evaluation methods: naïve, empirical Bayes 

(EB), and comparison group (CG). These three evaluation methods involved different trade-offs, 

such as data requirements, complexity, and regression to the mean. The safety evaluation at the 
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project level accounted for the influence of the DDI treatment in the entire footprint of the 

interchange; the site-specific approach focused on the influence at the ramp terminals only. All 

three methods showed that a DDI replacing a CDI decreased crash frequency for all severities. 

The percents of reduction in crash data presented in their report are summarized in table 1 and 

table 2. 

Table 1. Crash reduction percent at the project level. 

 

Table 2. Crash reduction percent in the site-specific analysis. 

 

The concern for safety is typically higher in interchange traffic due to complex traffic patterns 

resulting from diverging, merging, and frequent lane changing. Nye et al. conducted a national-

level safety evaluation of DDIs in the U.S.[36] Their study updated the previous evaluations and 

expanded the treatment group size of previous studies to provide a more robust and reliable 

safety assessment of DDI deployments. They used a crash modification factor (CMF) to estimate 

the ability of the countermeasure to reduce the number of crashes and the crash severity. Nye 

et al. reported a total CMF of 0.633 based on the comparison group analysis of 26 DDIs in 
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11 states. The CG method was also applied to a variety of crash variables for their study. Angle, 

rear-end, and sideswipe crashes were found to have CMFs of 0.441, 0.549, and 1.139, 

respectively. Fatal-and-injury crashes provided a CMF of 0.461. Daytime and nighttime crashes 

provided CMFs of 0.648 and 0.638, respectively. Their study determined that, of the 

observational before–after evaluation methodologies, the comparison group approach yielded the 

best evaluation results. 

One of the safety evaluation studies on interchange traffic management conducted outside of the 

U.S. was a study of driver behavior in a freeway interchange.[37] Although the study did not 

specifically focus on DDIs, some of the results and conclusions can benefit future research on 

DDI safety considerations. In that study, Wang et al. analyzed driver behavior characteristics in 

low-volume freeway interchanges by conducting a field experiment on the Qingyin Expressway 

in China. Four freeway interchanges with relatively low volume were selected, and 12 qualified 

drivers (i.e., 6 car test drivers and 6 truck test drivers) drove vehicles according to the driving 

program. GPS and an eye-tracking instrument were employed to record parameters such as 

running speed in real time, running track, and fixation point. Wang et al. examined the drivers’ 

fixation on exit guide signs, and their behavior in diverging and merging areas. Their results 

indicated that: (1) drivers recognize the exit direction signs at 170–180 m advance distance; 

(2) the diverging influence area is 1000 m upstream of the diverge point, while the merging 

influence area is 350 m downstream of the merge point; and (3) a NO OVERTAKING sign is 

recommended to be placed 350 m upstream of the diverging point. 

One of the most important public safety concerns at DDIs is the risk of vehicles traveling down 

the wrong direction. Vaughan et al. investigated the long-term monitoring of wrong-way 

maneuvers at DDIs.[38] Five DDIs were continuously monitored for 6 months to observe rates 
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and causes of wrong-way maneuvers by installing video cameras at each DDI and postprocessing 

the video by using video detection software. Their analysis showed that wrong-way maneuvers 

tended to occur more often when vehicles were first entering the DDI rather than after correctly 

moving through the first crossover and then going the wrong way at the second crossover that 

they approached (traveling outbound). Also, wrong-way maneuvers were found to occur more 

frequently at night than during the day. Their findings show that DDIs do experience a certain 

level of wrong-way maneuvers; however, no crashes could be identified from safety records that 

were associated with these events. Therefore, the study concluded that DDIs have generally 

proven to be safe and efficient movers of traffic when designed appropriately.  

Other studies surveyed that address the safety of DDIs include references 39, 40, 41, 42. 

MISCELLANEOUS 

In this section, a number of notable works that do not fit into any of the above categories are 

presented. For example, Maji et al. developed a planning tool for an efficient way to evaluate 

DDIs by using the CLV as a criterion.[43] Their study is different from the studies presented 

previously because its focus was not about the evaluation of a particular DDI but rather 

development of an easy and inexpensive way to evaluate DDIs in general. In a similar study on 

developing evaluation tools, Anderson et al. proposed discrete event simulation as a tool to 

evaluate DDIs.[44] In a study by Duan and Abbas, the investigators conducted an analytic 

calculation of delay in DDIs in order to optimize the timing plans more efficiently.[45] In another 

study, Yeom et al. pointed out that most of the lane use analysis models currently being used for 

lane configuration were originally developed for conventional interchanges.[46]; thus, their study 

proposed unique multi-regime lane utilization models. 
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CONCLUSIONS 

The research and reports discussed in this literature survey highlight the current progress and 

challenges of diverging diamond interchanges. In surveying the literature, the research on DDIs 

in the transportation field is still in its infancy, with research devoted to any aspect of DDIs being 

very limited. Coordinated control strategies for DDIs and their adjacent intersections have not 

been sufficiently explored in the transportation literature. No studies of utilizing closed-loop 

feedback control strategies have been reported. Therefore, from this literature survey, we 

concluded that the results produced from this project can be of great consequence to the field of 

transportation research.  

Active DDIs in the United States 

In this section, table 3 and table 4 summarize the active DDIs in the U.S. as of 2012 and 2015, 

respectively, with table 5 providing the location of the active DDIs in 2015. 
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Table 3. All DDIs active in the United States by the year 2012. 
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Table 4. All DDIs active in the United States by the year 2015. 
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Table 5. Number of DDIs active in 2015 by location. 
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 MODELING AND DATA ANALYSIS 

During Task I (months 1 to 4) of the project, a thorough literature review was conducted to 

survey the state of the art of the current research on DDIs and traffic control schemes. This initial 

task served to shape the scope and direction of this project’s research so that the work of 

subsequent tasks could add the most value to the existing knowledge. During Task II, 8 months 

of data were collected for two signals within the DDI at Jimmy Carter Blvd. (signal 1663, signal 

1664) and two adjacent signals, one upstream and one downstream (signal 1662, signal 1665). 

Then, a thorough data analysis was conducted to extract traffic trends, as well as to construct 

data-driven models that can make predictions on future traffic flows. The purpose of Task II was 

to build the foundation for the development of a traffic predictive control algorithm. The 

information extracted and the models developed from data during Task II were used in Task III 

(algorithm development) for synthesizing algorithms that coordinate mainline traffic with 

downstream intersections and freeway exit ramp traffic. The following items were accomplished 

during Task II: 

• Principal component analysis (PCA) was performed to detect anomalies in traffic trends. 

PCA is a powerful data visualization technique that helps extract the outliers in a large 

data set. This analysis tool was used to separate the days for which traffic trends were 

drastically different from the usual patterns and exclude them from the historical data 

later used to construct data-driven models. Also, analyzing the unusual flows and their 

characteristics helps determine how to adjust the signal timings when such trends are 

detected again in the future. Our results demonstrated that the method was able to extract 
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important features and characteristics of the traffic flow and detect anomalous trends 

effectively. 

• Models were constructed from historical data using SIMPLS regression, an advanced 

regression method—the technical methodology of which is detailed in this chapter. 

Utilizing the SIMPLS models, the researchers were able to predict the afternoon and 

evening traffic from the morning data. However, the model parameters can be easily 

adjusted depending on the prediction time selected by the practitioner—thus, making 

predictions on new intersections and over different time periods easily implementable by 

these methods. Being able to predict the future traffic flow helps the traffic engineers to 

adjust the time-of-day (TOD) plans accordingly, as well as prepare for necessary 

arrangements if the prediction indicates that congestion is imminent. The algorithm was 

able to make excellent predictions that match extremely well with the actual traffic. 

• Optimal time segmentation of the daily traffic data was performed by dynamic 

programming. This helps identify the optimal switching times between the TOD plans. 

The method used allows the practitioner to select whether to prioritize the arterial traffic 

or the off-ramp traffic, depending on their respective volumes, and time segmentation is 

performed accordingly. Moreover, predicted future traffic flows can be incorporated into 

time segmentation to inform the practitioner when to continue with the current timing 

plan and when to adjust the switching time. 

DETECTING ANOMALIES FROM TRAFFIC DATA 

While constructing models from data, it is necessary to exclude outliers from the data set since 

their characteristics are drastically different from typical data. However, for large data sets, such 

as 8 months of traffic turning-movement counts for several different movements, it is usually not 
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possible to identify the outliers from time series plots alone. Principal component analysis is a 

powerful data visualization tool that allows efficient identification of anomalies in the data.[47,48] 

Methodology 

Data on Mondays are used to demonstrate the method. Let D be the number of days for which 

the historical data were collected, let M be the number of movements, and let T be the number of 

times the turning movement count was recorded in a day. Then the data are represented as a 

matrix A∈ CD×TM, as follows. Each row of A represents each Monday in the data set. The 

columns of A are partitioned into M blocks—one block is dedicated to each movement. Within 

each block, there are T columns and each column contains the traffic count at that particular 

measurement. It is well known that any matrix A can be decomposed into a product of three 

matrices, as in equation 1: 

  (1) 

where U and V are unitary matrices, and ∑ can be partitioned into two submatrices: one with all 

zeroes and the other a diagonal matrix whose diagonal entries carry the singular values of A 

arranged in the descending order. Therefore, to approximate matrix A with a rank r matrix for 

any r > 0, the best rank r approximation of A denoted by Ãr  can be computed as in equation 2: 

  (2) 

where Ũr∈ CD×r, Ṽr∈ ℂTM×r
 are the first r columns of U and V, respectively, and Σr∈ ℂr×r is a 

diagonal matrix with r largest singular values arranged in descending order. The columns of U 

are the eigenvectors of AA*
 and are called the left singular vectors of A. The columns of V are the 

eigenvectors of A*A and are called the right singular vectors of A. The columns of U and V are 
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arranged in descending order of the magnitude of their corresponding singular values. The 

approximation Ãr can be loosely interpreted as the matrix that contains r most important features 

of A. Therefore, PCA is a powerful method to extract low-rank structures from large-scale data. 

Now let 𝑎𝑖 be the ith row of A and vi be the ith column of V and observe, as in equation 3: 

  (3) 

where < , > denotes an inner product on Cn such that for any x,y ∈ Cn, < x, y > = xT
 y, which is 

also known as the dot product. Since vi are unit vectors, < aj; vi > represents the magnitude of aj 

projected in the vi direction. In other words, it is the coordinate of the jth row of data in the vi 

direction. Now, consider taking the first three columns of AV; doing so is equivalent to rank r 

truncation with r = 3. Therefore, these three columns contain the coordinates of the data along 

the three most important directions. Now, if v1, v2, v3 are used as an orthogonal axes of a three-

dimensional coordinate system, the data can be visualized effectively in a 3-D scatter plot. In that 

case, the outliers whose characteristics are drastically different from the rest can be expected to 

have significantly different coordinates in the three primary directions. 

In this case study, data between 06/03/2019 and 02/03/2020 were collected for the two signals 

within the DDI at Jimmy Carter Blvd. (signal 1663, signal 1664) and two adjacent signals: one 

upstream and one downstream (signal 1662, signal 1665). Since the traffic trends are highly 

dependent on the day of the week, the data are separated into seven different matrices, one for 

each day of the week. Monday data are used to demonstrate the method without losing 

generality. There are 36 Mondays between these dates and, therefore, the Mondays matrix 

contains 36 rows. Even though PCA can be performed on the matrix with all blocks of 
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movements, the analysis reveals that such approach fails to capture the nuances of the individual 

movements. Therefore, PCA is performed on each movement separately. The researchers 

obtained the data by download from GDOT’s Automated Traffic Signal Performance Measures 

(ATSPM) website at https://traffic.dot.ga.gov/ATSPM/. One issue encountered was that the 

database of the website erroneously registered zeroes for many days for several movements. The 

issue was communicated to GDOT, and GDOT informed the research team that the issue would 

be rectified soon. Meanwhile, the days with missing data are excluded from the analysis. 

Results 

Once the outliers have been identified by PCA, that data for those particular days can be more 

closely inspected to determine what is unique about those days. For example, figure 1 depicts the 

scatter plot of PCA results of Mondays data set for signal 1662 northbound through movements. 

It can be seen that days 7, 11, and 21 are clear outliers and unusual traffic trends should be 

expected in northbound through movements on these days. Indeed, on close inspection, it was 

observed that day 7 exhibited elevated northbound through and right movements between 

6:30 a.m. and 1:45 p.m., and day 11 saw large spikes in the morning peak hours followed by a 

dip at 11:45 a.m. in the same movement. Day 21 turned out to be New Year’s Eve, which had 

drastically different trends from a typical Monday. A thorough analysis of the behavior on each 

of the unusual days is reported in table 6. The summaries of analyses for signals 1662, 1663, 

1664, and 1665 are summarized in table 6, table 7, table 8, and table 9, and their respective 

scatter plots of PCA analysis are shown in figure 1 through figure 16. 

https://traffic.dot.ga.gov/ATSPM/
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Table 6. Outliers for Mondays at signal 1662:  

SR 140 and Crescent Dr./Goshen Springs Rd. 
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Figure 1. Scatter plot. Mondays northbound through right at signal 1662. 

 

Figure 2. Scatter plot. Mondays eastbound left at signal 1662. 



 

35 

 

Figure 3. Scatter plot. Mondays southbound through right at signal 1662. 

 

Figure 4. Scatter plot. Mondays westbound right at signal 1662. 
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Table 7. Outliers for Mondays at signal 1663: 

SR 140 and I-85 southbound. 

 

 

Figure 5. Scatter plot. Mondays westbound left at signal 1663. 
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Figure 6. Scatter plot. Mondays westbound right at signal 1663. 

 

Figure 7. Scatter plot. Mondays westbound total at signal 1663. 
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Figure 8. Scatter plot. Mondays northbound through at signal 1663. 

 

Figure 9. Scatter plot. Mondays northbound total at signal 1663. 
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Table 8. Outliers for Mondays at signal 1664: 

SR 140 and I-85 northbound. 

 

 

Figure 10. Scatter plot. Mondays eastbound left at signal 1664. 
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Figure 11. Scatter plot. Mondays eastbound right at signal 1664. 

Table 9. Outliers for Mondays at signal 1665: 

Jimmy Carter Blvd. and Dawson Blvd./Live Oak Pkwy. 
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Figure 12. Scatter plot. Mondays eastbound total at signal 1665. 

 

Figure 13. Scatter plot. Mondays northbound total at signal 1665. 
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Figure 14. Scatter plot. Mondays westbound total at signal 1665. 

 

Figure 15. Scatter plot. Mondays southbound total at signal 1665. 
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Figure 16. Scatter plot. Mondays total at signal 1665. 

TRAFFIC PREDICTION 

Methodology 

Historically, partial least squares (PLS) regression has been known for its robust multivariate 

prediction capabilities.[49,50] It has been shown to produce results comparable to powerful 

machine learning algorithms when predicting traffic flow.[51] In this current study, the most 

recently developed form of PLS regression, known as SIMPLS regression, was used to construct 

models of turning movement behavior and to make predictions of future behavior. The collected 

historical data are partitioned into two blocks (see figure 17): Z (predictors) and Y (response). 

The model constructed from Z and Y will be used along with Zs (new measurements) to predict Ys 

(future response). The historical data are first preprocessed, i.e, they are mean subtracted and 

normalized by the standard deviation. Preprocessed Z and Y are denoted by 𝑍̃ and 𝑌̃, 

respectively. From these historical data, three matrices T, P, and C are constructed. The matrix T 

contains orthogonal column vectors usually known as the scores. The P and C matrices are 
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known as the latent variable matrices. The matrices T, P, and C together describe the 

relationship between the predictor and the response, and they are designed to maximize the 

correlation between the prediction block and response block of the historical data. The matrices 

T, P, and C are constructed by an iterative method where one column is produced in each 

iteration. For example, the ith iteration produces ti , pi , and ci, the ith column of matrix T, P, and 

C, respectively. To maximize the correlation between the predictor and response, first, begin by 

determining the unit vectors u* and v* such as in equation 4: 

  (4) 

It can be verified that u* and v*  are the first left and right singular vectors of 𝑍̃⊤𝑌̃. Now, we will 

use u* to construct the first score vector and the latent vectors, as in equations 5, 6, and 7: 

  (5) 

  (6) 

  (7) 

Notice that t1 is a unit vector and we would like to have a set of such ti vectors that are 

orthogonal to each other and a set of pi and ci vectors constructed from the corresponding ti 

vectors. To ensure that the score vector t2 produced in the second iteration is orthogonal to t1, the 

components of the data in the direction of t1 must be subtracted out from the data matrix. 

Therefore, at the end of each iteration, the data matrices 𝑍̃ and 𝑌̃ are updated to prepare for the 

next iteration by subtracting their projection on the current score vector, as in equations 8 and 9: 

  (8) 
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  (9) 

This process is also known as defeating the data matrices. These updated matrices 𝑍̃++ and 

𝑌̃++will be used in the place of 𝑍̃and  𝑌̃ in the next iteration. After N iterations, matrices T, P, 

and C each with N columns are constructed. It is known that the new measurements and future 

predictions are related through these matrices, as in equation 10: 

  (10) 

where ӯ and 𝑧̅ are matrices carrying the column means of Y and Zs, respectively. 

 

Figure 17. Diagram. Partitioning of the data matrix for SIMPLS. 

Results 

Data were gathered for signals 1662, 1663, 1664, and 1665 between the months of June 2019 

and February 2020. Due to inherent sensor noise, the data were filtered prior to modeling as 

described in Xing et al.[5] Then, a SIMPLS model was built for the turning movement behavior 

for each movement/intersection pair. Figure 18, figure 19, figure 20, and figure 21 show traffic 

predictions made for four different turning movement/intersection pairs on the day of Monday, 

February 3, 2020. Each model was trained over data from 17 prior Mondays. On the prediction 
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day, new measurements were made until 10:00 a.m. and predictions were made for the rest of the 

day. It was observed that the predictions matched the actual traffic very well. 

 

Figure 18. Line graph. PLS prediction for the southbound through right movement 

at intersection 1662. 
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Figure 19. Line graph. PLS prediction for the northbound through movement 

at intersection 1663. 

 

Figure 20. Line graph. PLS prediction for the eastbound left movement 

at intersection 1664. 
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Figure 21. Line graph. PLS prediction for the northbound through movement 

at intersection 1665. 

OPTIMAL TIME SEGMENTATION FOR TIME-OF-DAY PLANS 

Time-of-day (TOD) scheduling is central to most traffic control schemes. By analyzing traffic 

trends at different periods throughout the day, traffic control engineers can design specific timing 

schemes for each period. However, segmentation of a day into such periods is often done 

heuristically or with the aid of simulation software. This current work uses the formal 

mathematical notation of optimality to derive optimal TOD segments from historical data such 

that the traffic is close to uniform over each segment. Previous work has highlighted the use of 

optimization algorithms for segmenting multivariate time series; however, much of this work 

uses k-means clustering, which requires heavy computational time.[53,54] In this study, the 

researchers leveraged dynamic programming (DP)[55] to perform optimal TOD segmentation as 

seen in references 56, 57, and 58. However, unlike previous approaches, the research team 

proposed a useful weighting scheme that allows the practitioner to weight the particular 
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movements in the optimization problem. This is useful when service of certain movements, 

pertaining to arterial or off-ramp traffic, is prioritized. In addition to providing optimal TOD 

segmentation times, the proposed algorithm provides the practitioner a model of traffic flow 

during each TOD interval. This model can be used to index readily available timing guides to 

arrive at optimal timing strategies for the DDI and its adjacent intersections. 

Methodology 

The problem of deriving optimal segments from a multivariate time series can be recast as 

determining the optimal piecewise constant function approximating said time series, since the 

goal is to find segments where traffic is most uniform. Given M movements over T time 

measurements, let X∈ RM×T represent a standardized, i.e., mean-centered and standard deviation 

of 1, data matrix with the average volume of traffic for movement i at time j stored at location 

X(i,j). Since this problem is for TOD segmentation, the columns of this matrix represent different 

time stamps over a 24-hour day. Let 𝑆 ∈ ℤ+ be the number of segments to divide the time series 

into. In traffic engineering, it is common for as many as 4 to 7 TOD plans to be used.[58] At the 

end of the calculations, the goal is to derive a vector of S + 1 breakpoints that represent the 

boundaries of each TOD segment: τ = [τ0, τ1,…, τS]. Naturally, τ0 = 0, τS = T, and τi < τi+1. 

Over each segment, the goal is to find the optimal neighborhood parameters {μ1,…,μS}, where 

μi ∈ RM models the traffic flow in cars per hour over the ith segmentation period. Formally, the 

goal is to minimize the error between the approximation μi and the actual traffic over the 

corresponding TOD period, as in equation 11: 

  (11) 
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where T is the transpose operator and xi(t) is the tth
 column of X over the TOD segment i. This 

error is called the “fit” of the parameter set to the data, as in equation 12: 

  (12) 

Note that the fit presented here is equivalent to summing the mean-square error of each of the 

movements across this TOD segment. Also, the fit is a positive definite function convex in its 

second argument. This unique property ensures that local minima are indeed global minima, thus 

making the optimization problem feasible.  

Now that the error associated with approximating a given segment of a multivariate time series 

by a constant vector is known, the next step is to determine the optimal segmentation of the 

series. The goal is to minimize the error, or cost, of approximating the entire multivariate time-

series by a piecewise constant vector-valued function. Precisely, the hope is to minimize the cost 

function, as in equation 13: 

 (13) 

The global minimum of this function would be computationally expensive to find by exhaustive 

enumeration. The following section proposes a dynamic programming approach to solving this 

optimization problem. 

Dynamic Programming 

Generally, dynamic programming is the act of performing computation recursively and storing 

computations that are performed in order to save computation time. This problem is rather 

involved and demands three answers: 
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1. What is the global minimum of the cost function outlined in equation 13? 

2. What are the TOD boundaries, τ, that minimize this cost function? 

3. Over each TOD interval, what are the optimal neighborhood parameters, µ, that best 

represent traffic flow? 

The research team directly computed the answer to item 1, through backtracking the answers to 

items 2 and 3. 

The Algorithm 

Let  𝐶𝑖,𝑗
𝑠   be the optimal partitioning of the sequence {𝒙i , ..., 𝒙j }into s segments. Let 𝑍s(j) be the 

sth
 segmentation point that minimizes 𝐶𝑖,𝑗

𝑠 . Finally, let the vector µi,j represent the constant model 

of traffic flow across the interval of time i to j. The appropriate DP algorithm to find the global 

minimum of the cost and the optimal TOD segments is summarized as algorithm 1 in figure 22. 

Step 1 preprocesses the data so that the segmentation algorithm has access to the average traffic 

volume for each movement at each time index throughout the day. Step 2 computes the measure 

of fit for all possible segments and memorizes these values for later use. Step 3 computes the 

optimal partitions iteratively, beginning with 2 segments and working its way up to S segments. 

Step 4 uses backtracking to find the optimal TOD breakpoints from the previous step’s 

computations. When finished, the model parameters µ for each TOD segment can be indexed 

from Step 1. Note that the backtracking step computes the optimal partitions s = 1, ..., S 

segments. Thus, the algorithm does not need to be executed again to derive optimal lower-order 

segmentations. 

As an elaboration on Step 4, consider segmenting a time series {𝑥1, ..., 𝑥T } into S segments. 

Naturally, the final segment will be some [s + 1, T ]. Subsequently, the optimization problem is 
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to segment the series {𝑥1, ..., 𝑥s } into𝑆 − 1 . segments. Step 4 uses this idea to backtrack over 

the results from Step 3 and extract the optimal TOD breakpoints. 

Algorithm 1 Optimal TOD Segmentation via Dynamic Programming 

1: procedure Pre-process Data (Step 1) 

2:  Initialize data matrix A, which contains historical time-series for movements 1 through M. 

3:  Let the rows of matrix X contain the average time-series for each movement from A. 

4:  Standardize the rows of matrix X (mean zero/ standard deviation 1). 

5: procedure Compute measure of fit for all possible segments (Step 2) 

6:  for (i, j), i ≤ j , and i, j ∈ [1, n ] do 

7:   𝐶𝑖,𝑗
𝑠 := J (𝑥i ... 𝑥j , µ’ , τ ‘ , 1) 

8:    𝝁𝑖,𝑗: = argmin
𝝁

 𝐽(𝒙𝑖 … 𝒙𝑗 , 𝝁′, 𝝉′, 1)_ 

9:   𝑍1(𝑗): = 0 

10: procedure Compute optimal partitions  𝑠 = 2,3, … , 𝑆 segments (Step 3) 

11:  for s = 2 to S do 

12:   for j = 1 to T do 

13:     𝐶1,𝑗
𝑠 : = 𝑚𝑖𝑛

𝑣∈[1,𝑗)
 (𝐶1,𝑣

𝑠−1 + 𝐶𝑣+1,𝑗
1 ) 

14:      𝑍𝑠(𝑗): = argmin
𝑣∈[1,𝑗)

(𝐶1,𝑣
𝑠−1 + 𝐶𝑣+1,𝑗

1 ) 

15: procedure Recover 𝝉 via backtracking (Step 4) 

16:  for s = 1 to S do 

17:    𝜏𝑆(𝑆): = 𝑇 

18:   for  𝑖 = 𝑠, 𝑠 − 1, … ,1 do 

19:     𝝉𝑆−1(𝑖): = 𝑍𝑠(𝝉𝒔(𝑖)) 

Figure 22. Algorithm 1. Optimal TOD segmentation via dynamic programming. 

Convexity and Improved Fit Functions 

This section is dedicated to improved fit functions, i.e., functions that make the segmentations 

and neighborhood parameters in this study more useful to traffic engineers. It is more important 

for a particular intersection to serve certain movements over the others. Therefore, the 

researchers present an improved fit function that allows traffic engineers to weight these 

movements over those less important. 

As stated previously, convex optimization problems are much simpler to solve, in general, than 

nonconvex optimization problems. This is because local minima are, in fact, global minima in 
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convex optimization problems. Each fit function presented in this paper is convex, ensuring that 

the parameters µ are easily computed. However, the larger DP algorithm that computes the 

optimal segmentation times τ  from the cost function J(·) does not use or rely on convexity.  

Recall equation 12, which represents the optimal fit for an arbitrary interval 𝜏𝑖−1 + 1, … , 𝜏𝑖. For 

notation’s sake, rewrite it in the form given in equation 14: 

  (14) 

Allow, as in equation 15: 

  (15) 

where 𝑨 ∈ ℝ𝑀×𝑀 is a positive semi-definite (PSD) matrix. Due to this property and equation 15 

being in quadratic form, the optimization problem remains convex. 

The only remaining problem to address is the choice of a matrix A that appropriately weights the 

movements in this optimization problem. In general, it is simplest to choose a diagonal matrix 

with nonnegative entries. This ensures that the matrix is PSD and that its eigenvalues represent 

the weight of each movement. Consider a simple case in which there are two movements with a 

goal to weight the second movement twice as much as the first. It would result in the matrix 

shown in equation 16: 

  (16) 
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In general, a nondiagonal PSD matrix could be chosen where the entries off of the diagonal 

represent the correlations between movements. However, the authors believe that this scenario 

may be inappropriate for practical implementation. 

Results 

The results presented here show the optimal TOD segmentation times derived by algorithm 1 for 

signal 1665 on Sundays. Training data from June 2019 to February 2020 were used. The 

movements considered were eastbound, southbound, northbound, and westbound totals. Results 

using the fit function reported in equation 12 are shown in figure 23. 

At this intersection, northbound and southbound movements represent the majority of traffic 

flow. In fact, these movements feed into and receive traffic from an adjacent DDI. Therefore, the 

goal was to weight these movements heavily. The research team used the fit function proposed in 

equations 14 and 15. When these movements were weighted double their secondary counterparts, 

the algorithm produced the segmentation depicted in figure 24. 
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Figure 23. Line graphs. Optimal TOD segments using the original fit equation. 

 

Figure 24. Line graphs. Optimal TOD segments using the modified fit. 
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CONCLUSIONS 

During Task II, all necessary building blocks were built for the foundation of the traffic 

predictive control algorithm that would be developed in Task III. The important features and 

characteristics of the traffic trends were separated out from the noise in the data set through PCA 

and the results demonstrated that the method was able to detect anomalous traffic trends 

effectively. The low rank structures in the data obtained through PCA and singular value 

decomposition (SVD) were used to construct data-driven models by applying SIMPLS 

regression. It was observed that these models can make excellent predictions, which match the 

actual traffic extremely well. The researchers also developed an algorithm that performs optimal 

time segmentation for switching times between TOD plans using dynamic programming. This 

algorithm performs time segmentation depending on whether the practitioner selects to prioritize 

the arterial traffic or the off-ramp traffic. All of the building blocks and tools developed and the 

information gathered during Task II put the team on a solid foundation for the next step of 

developing the traffic predictive control algorithm in Task III. 
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 ALGORITHM DEVELOPMENT AND ALGORITHM IN PSEUDOCODE 

The main objective of this research project was to develop actuated traffic control algorithms for 

coordinated anticongestion control of diverging diamond interchanges and their surroundings 

based on recently developed control theory to produce closed-loop, data-driven, and model-free 

control strategies that provide guarantees on performance. The primary goal was to formulate 

coordinated signal control regimes between DDIs and adjacent intersections. The secondary goal 

was to report the project’s research findings to GDOT and disseminate said findings to the 

transportation research community, as well as the general public, through various publications 

and communication channels. During Task I (literature review) of the project, a thorough 

literature review was conducted to survey the state of the art of the current research on DDIs and 

traffic control schemes. This task served to shape the scope and direction of this project’s 

research so that the work of future tasks would add the most value to the existing knowledge. 

During Task II (modeling and analysis), 8 months of data were collected for two signals within 

the DDI at Jimmy Carter Blvd. (signal 1663, signal 1664) and two adjacent signals, one upstream 

and one downstream (signal 1662, signal 1665). Then, a thorough data analysis was conducted to 

extract traffic trends, as well as to construct data-driven models that can make predictions on 

future traffic flows. The purpose of this task was to build the foundation for the development of a 

traffic predictive control algorithm. During Task III (algorithm development), the information 

extracted and the models developed from data during Task II were used for synthesizing 

algorithms that coordinate mainline traffic with downstream intersections and freeway exit ramp 

traffic. The following were accomplished during Task III: 
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• The Robust SIMPLS traffic prediction and control algorithm was developed. The 

algorithm in pseudocode and the detailed technical aspects of the algorithm are presented 

in this report. During Task II, the team identified the issue that the turning moving count 

data obtained from the ATSPM website were highly corrupted. Therefore, the SIMPLS 

model constructed during Task II needed to be robustified against corruption in data. The 

team developed a new data-driven traffic prediction algorithm, dubbed Robust SIMPLS, 

which performs well even with corrupted training data. Results of this newly developed 

algorithm have been submitted for presentation at the TRB annual meeting and 

publication in the Transportation Research Record (TRR). 

• The team developed a prototype of a decision support web engine to aid traffic engineers. 

The web engine receives traffic data on the DDIs through the ATSPM website. Based on 

this real-time incoming data, the predictions of the Robust SIMPLS algorithm will be 

displayed in a graphical user interface for use by traffic engineers. The web engine will 

also provide timing scheme adjustment recommendations or send out alerts to field 

engineers when the traffic trends indicate that intervention is necessary. 

• In order to demonstrate the feasibility of the decision support tool web engine, the team 

created a Synchro/ SUMO simulated testbed. GDOT provided the research team with 

Synchro files for several DDIs in the state of Georgia. Data from these Synchro files were 

imported into SUMO, an open-source, microscopic traffic simulator. With SUMO, the 

traffic prediction algorithm was trained and tested with different traffic demand profiles. 

In cases where intervention is recommended by the prediction algorithm, SUMO can be 

used to demonstrate how altering the signal timings and ramp metering would increase 

efficiency at the interchange and neighboring intersections. 
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Traffic flow predictions play a central role in modern traffic predictive control algorithms. (See 

references 58, 59, 60, 61.) Recently, the importance of data-driven predictions—as opposed to 

analytic, model-based predictions—has been realized.[62,63,64] Data-driven predictions are easily 

updated and are often computationally inexpensive to derive, which makes them attractive for 

practical applications. However, little work has been done to ensure that data-driven models of 

traffic flow are robust to corruptions in training data and real-time traffic measurements. Such 

corruptions may come from one-off traffic anomalies or faulty traffic flow sensors. 

With the insurgence of deep learning in the transportation community, data-driven system 

identification has largely relied on heuristics—namely, various neural network (NN) 

architectures—rather than rigorous mathematical analysis. Ke et al. utilized convolutional NNs 

to predict multi-lane traffic speeds.[65] Zhang et al. demonstrated the use of long short-term 

memory NNs to predict pedestrian crossing behavior.[66] Perhaps the most notable NN-based 

approach to traffic flow prediction belongs to Li et al.[67]; however, similar to Lu et al., [68] this 

method uses the concept of “network diffusion”—i.e. it relies on real-time network-wide 

measurements and communication to produce such predictions, which is not practical in many 

traffic control scenarios. All of these techniques replace traditional time series methods, such as 

seasonal mean, autoregressive moving average (ARMA) filters, and support vector regression 

(SVR), for traffic flow forecasting.[69] 

Despite the myriad of data-driven techniques for predicting traffic flow, most are impaired by 

corrupt data. The research team proposed combining Robust Principal Component Analysis 

(RPCA)[70] and SIMPLS regression, whose name is best explained by Jong,[71] to overcome this 

issue. The prediction scenario explored in this work is as follows: given traffic flow 

measurements from an intersection in the early morning, can traffic for the remainder of the day 
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be predicted? If the predictions differ substantially from historical averages, they can be used to 

automatically tune a future time-of-day plan or to alert a traffic engineer that manual adjustments 

may be required. This prediction scenario can, of course, be trivially generalized to different 

circumstances, prediction horizons, etc.  

This section is organized as follows. Mathematical preliminaries are presented and then followed 

by a brief explanation of SIMPLS and RPCA. The proposed method, Robust SIMPLS, is then 

formalized. Then, the technique is used to predict real traffic flow through the DDI at Jimmy 

Carter Blvd. and its adjacent intersections. The results are compared to those produced by other 

data-driven approaches, which show that Robust SIMPLS is an improvement to the current state 

of the art. 

REMARKS ON CORRUPT TRAINING DATA 

In most data-intensive applications, the data are corrupt with noise. This noise could come in two 

forms: (1) low-energy, mean-centered Gaussian noise, (2) one-off, high-energy traffic 

anomalies—e.g., an accident that causes major delays for a brief period of time. This section 

address each of these sources of error below. 

Low-energy, mean-centered Gaussian noise is likely to come from sensor error. This is 

equivalent to a sensor counting a few extra, or a few less, cars during each recording interval. 

Since these are low-energy, they are described by the final few rank-1 matrices of the data’s 

SVD—i.e., they are described by the smallest singular values of the data. Thus, a simple rank-r 

truncation of the training data used in building SIMPLS models will keep SIMPLS from trying 

to predict this random process. However, the maximum correlation between predictors and 

responses is used in building SIMPLS models. Therefore, it is probable that there is no need to 
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address these low-energy corruptions in the data at all. Unfortunately, one-off, high-energy 

anomalies in training data are likely to severely corrupt SIMPLS models. Consider the following: 

a single entry in the training data, X, is highly corrupted. The corrupted data matrix can be 

described as in equation 17: 

  (17) 

where ei is the ith standard basis vector—i.e., a vector with zero entries everywhere except the ith 

entry, which contains a 1—and 𝜃 is the size of the corruption. Note that 𝜃𝑒𝑖𝑒𝑗
𝑇 is a rank-1 matrix 

and 𝜃 is its singular value. By the Weyl inequalities,[72] it is known as in equation 18: 

  (18) 

Since the upper bound in equation 18 is achievable, it is possible for this single corruption to 

alter the largest singular value of the matrix—the singular value that is associated with 

representing the most variance in the data! This is dangerous for data scientists, and it prevents 

the practitioner from using the standard approach of using a truncated SVD in order to rid the 

data of disturbances. This easily extends to scenarios where the data are corrupt by multiple 

rank-1 matrices whose singular vectors are coherent with the standard basis vectors. 

Imagine a data matrix representing turning movement counts. These data are corrupt with both 

low- and high-energy noise. It is also possible that the data have gaps expressed as zeros due to 

lapses in recording by a traffic controller. If these corruptions are even moderately present, the 

SVD of this data matrix may “waste” singular values/vectors on expressing such data 

corruptions. Quickly, the PCA (and SVD) of these data become tainted. 
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ROBUST PRINCIPAL COMPONENT ANALYSIS 

RPCA was proposed as a matrix separation algorithm in order to denoise data.[70] Specifically, it 

attempts to remove sparse corruptions in data. Such corruptions come in the form of 𝜃𝑒𝑖𝑒𝑗
𝑇. 

However, (1) the singular vectors associated with these corruptions need only be coherent with 

the standard basis,1 and (2) there may be more than one corruption in the data—i.e., the 

corruption matrix is expressed as in equation 19: 

 . (19) 

Consider an incoming data matrix as a superimposition of a low-rank matrix (L) and a sparse 

noise matrix (S) as in equation 20: 

  (20) 

The low-rank matrix is not corrupted by noise—this matrix can be used to inform SIMPLS 

models. L should be as low rank as possible and S should be as sparse as possible. In other 

words, these matrices are the solution to the optimization problem, as in equation 21: 

  (21) 

Unfortunately, neither the rank or the ℓ0
 norm of a matrix are convex; thus, this optimization 

problem is particularly difficult. However, Candès et al.[70] have shown that the solution to the 

following convex optimization problem produces optimal solutions to equation 21, as in 

equation 22: 

                                                           
1i.e., the singular vectors need only resemble the standard basis vectors. See reference 73 for an exact definition of 

coherence. 
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  (22) 

Here, ∥ ⋅  ∥∗_ denotes the nuclear norm (a proxy for rank), ∥ ⋅ ∥1 . denotes the ℓ1
. norm (a proxy for 

sparsity), and λ is a weighting parameter. 

Equation 22 is known as principal component pursuit (PCP) and can be easily solved using 

augmented Lagrange multipliers (ALM).[74] The principal components of L are robust to noise in 

the original data—hence, the name RPCA. If λ is chosen as in equation 23: 

  (23) 

PCP will recover L and S exactly, provided that the singular vectors of L are incoherent with the 

standard basis vectors and the rank of L is not too large. In general, this algorithm produces a 

low-rank matrix L that is significantly different than the low-rank approximation of the original 

data, Ar, obtained via the SVD/PCA. 

ROBUST SIMPLS METHODS AND RESULTS 

Given the likelihood of corrupt training data, it is only natural to extend the results of SIMPLS to 

a setting that is robust to such corruptions. This is easily achieved by first performing RPCA on 

the training data and then using the low-rank matrix L to construct SIMPLS models. A sample 

algorithm that may run throughout the day to either (1) deliver traffic predictions to control 

engineers, or (2) inform a traffic-predictive controller (as seen in reference 58), is outlined in 

algorithm 2 in figure 25. 

To demonstrate the predictive accuracy of Robust SIMPLS, the research team evaluated its 

performance on highly corrupted data collected from a DDI in Norcross, Georgia, and its 
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adjacent intersections. A map of the intersections for which the results are reported is depicted in 

figure 26. Details about each of these intersections are summarized in table 10. Data between 

June 2019 and February 2020 were provided by GDOT for this study. 

The predictions are constructed as such: given measurements of vehicle turning-movement 

counts between 12:00 a.m. and 10:00 a.m., predict turning-movement behavior for the rest of the 

day. This is a more difficult problem than the traffic flow predictions based on network diffusion 

mentioned in the introduction because: (1) traffic flow measurements from other 

movements/intersections are not available, and (2) traffic for the entire day is forecasted at once. 

Extensions and modifications to this prediction horizon are trivial and easily obtained. This sort 

of problem is realized in scenarios where predictions play a role in planning—such as TOD plan 

scheduling, which must be done prior to the switching of TOD plans. 

Algorithm 2 Robust SIMPLS 

1: loop 

2:  if ←New Measurements Available then 

3:   X ←Record new traffic flow measurements 

4:   Z s← Extract new predictors from X 

5:   Z ←Append Zs to Z 

6:   𝑌̂𝑠 ← Predict future behavior using SIMPLS 

7:  if Update Model then 

8:   L, S ←Perform RPCA on X 

9:   T, C, P ← Build new SIMPLS model using L 
1000 ft 

Figure 25. Algorithm 2. Robust SIMPLS. 
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Figure 26. Photo. Map of a DDI and its adjacent intersections 

at I-85 and Jimmy Carter Blvd. in Norcross, GA.[75]  

© 2020 Google 

Table 10. Summary of intersections examined in this study. 

 

Predictive Accuracy 

For an initial experiment, movements at the four intersections on Monday, February 3, 2020, 

were predicted. The results are shown in figure 27, figure 28, figure 29, and figure 30. In each of 

these figures, the measured turning movements are shown in a dotted blue line. These 

measurements are assumed to be corrupt by sensor noise and one-off traffic anomalies, as 

mentioned previously. The Robust SIMPLS algorithm was trained on data from just eight prior 

weekdays—defined as Monday through Thursday—for intersections 1662–1664. The model 
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derived for 1665 used 20 prior weekdays due to complex flows at this intersection. The predictor 

variables were not filtered by RPCA prior to making the predictions reported here. The results, 

however, show that the model built using Robust SIMPLS is robust to the noise in the predictor 

measurements. For comparison, RPCA was run over the data once the responses were measured 

(at the end of the day, after predictions had been made). The corresponding denoised response 

variables are shown in orange. Clearly, Robust SIMPLS closely predicted the denoised response 

variables despite receiving corrupt predictor variables as input. Since RPCA exactly recovers the 

denoised data under the conditions mentioned previously, Robust SIMPLS predictions that are 

close to those produced via RPCA ensure that the predictions are highly accurate. 

11 summarizes the predictive accuracy of Robust SIMPLS for various movements and days. For 

each movement/day predicted, its data were removed from the data set used to inform the Robust 

SIMPLS model. Clearly, on some days Robust SIMPLS’s accuracy was comparative to that of 

the average traffic trend. However, when traffic was anomalous, Robust SIMPLS provided a 

much better prediction of traffic flow. Thus, Robust SIMPLS was advantageous over the average 

for most traffic prediction scenarios. 
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Figure 27. Line graph. Northbound through right movements at intersection 1662 

predicted between 10:00 a.m. and 12:00 p.m. 

 

Figure 28. Line graph. Westbound total movements at intersection 1663 

predicted between 10:00 a.m. and 12:00 p.m. 
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Figure 29. Line graph. Eastbound left movements at intersection 1664 

predicted between 10:00 a.m. and 12:00 p.m. 

 

Figure 30. Line graph. Northbound through movements at intersection 1665 

predicted between 10:00 a.m. and 12:00 p.m. 
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Table 11. Performance measures for Robust SIMPLS in various prediction scenarios. 

 

COMPARISON TO VARIOUS DATA-DRIVEN METHODS 

Now, the predictive accuracy of Robust SIMPLS is compared to that of SIMPLS, nonlinear 

regression via a neural network, and the simple average. For this comparison, the total 

northbound movements at intersection 1665 on October 3, 2019, were studied. The neural 

network used in this study consisted of two hidden layers of 100 nodes, each followed by 

rectified linear unit (ReLU) activation functions and was trained for 8000 iterations with a batch 

size of 14 using the Adam optimizer[76] and a learning rate of 0.001. Network weights were 

initialized using Glorot normal initialization.[77] The network was trained using the same training 

data set as Robust SIMPLS. Care was taken that the network was trained sufficiently without 

overfitting, as undertraining or overtraining would decrease its efficacy. 

The results of this comparison study are summarized in figure 31 and figure 32. Figure 31 shows 

the forecasted traffic flow via the average, the neural network, and Robust SIMPLS. Clearly, the 
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average traffic flow failed to capture the dynamics of traffic on this day. Both the neural network 

and Robust SIMPLS seem to capture the trend. However, as seen in Figure 32, Robust SIMPLS 

has a mean absolute error (MAE) that is lower than the neural network’s prediction by over 

33 cars per 15 minutes. For additional comparison, the MAE produced via traditional SIMPLS is 

also presented, which is over 27 cars higher per 15 minutes than that of its robust counterpart. 

Similar results are seen when comparing these methods on October 1, 2019—shown in figure 33 

and figure 34. 

IMPLICATIONS OF ROBUST SIMPLS 

The results presented in this section have been submitted for presentation at the TRB annual 

meeting and for publication in the TRR. This work has identified issues associated with classic 

PCA-based regression models in corrupt environments, and it proposes Robust SIMPLS as a 

solution to predict traffic flow in such environments. The results presented show that Robust 

SIMPLS is a significant improvement to traffic flow prediction methods currently employed. 

Moreover, this method does not require the tuning of high-level hyperparameters, such as those 

encountered when designing neural networks—i.e., human-in-the-loop learning is not required. 

Thus, it is a highly effective method for traffic control engineers that may not be experts in deep 

learning or data science. This prediction technique can be used to inform traffic-predictive 

controllers that autonomously switch between TOD plans based on forecasted traffic flow or to 

alert traffic engineers of unusual traffic trends. 
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Figure 31. Line graph. Predictions produced by Robust SIMPLS, 

an NN, and the average traffic volume for October 3, 2019. 

 

Figure 32. Bar graph. Comparison of MAE produced by Robust SIMPLS, 

SIMPLS, an NN, and average predictions for October 3, 2019. 
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Figure 33. Line graph. Predictions produced by Robust SIMPLS, 

an NN, and the average traffic volume for October 1, 2019. 

 

Figure 34. Bar graph. Comparison of MAE produced by Robust SIMPLS, 

SIMPLS, an NN, and average predictions for October 1, 2019.  
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 ALGORITHM TRAINING AND TESTING IN SYNCHRO/SUMO ENVIRONMENT 

OVERVIEW OF SIMULATION ENVIRONMENT 

In order to evaluate the Robust SIMPLS algorithm, a simulation testbed was developed in 

Task IV using Synchro and SUMO software. The purpose of the simulation environment was 

twofold; it was intended to train the algorithm using different traffic demand profiles and to test 

the effectiveness of the recommendations made by the algorithm. Historical data from GDOT’s 

ATSPM website were used to train the prediction algorithm. In simulated scenarios where 

intervention was recommended by the prediction algorithm, SUMO was used to demonstrate 

how altering the signal timings and ramp metering would increase efficiency at the interchange 

and neighboring intersections. To evaluate the algorithm, the team decided to focus on the DDI 

located at the I-285 interchange with Ashford Dunwoody Rd. and the neighboring signals; see 

figure 35 and 36. The Georgia Department of Transportation provided the research team with 

Synchro files for several DDIs in the state of Georgia, including the one at I-285 and Ashford 

Dunwoody Rd. These Synchro files contained important data regarding the geometry, phasing, 

and signal plans of intersections within and surrounding the interchange. Based on the software’s 

simulation capabilities, the research team decided to use SUMO, an open-source, microscopic 

traffic simulator, rather than Synchro to test the algorithm. The team discovered, however, that 

there is not a straightforward way to import data from Synchro to SUMO. Conversion files and 

scripts were created to convert the Synchro geometry and phasing data from Synchro to SUMO. 
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Figure 35. Photo. Aerial view of the DDI at I-285 and Ashford Dunwoody Rd. 

(Source: Google Earth) 

 

Figure 36. Map.  DDI at I-285 and Ashford Dunwoody Rd. with Intersection Names. 

(Source: Scribble Maps) 
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CONVERSION FROM SYNCHRO TO SUMO 

Converting the DDI data from the provided Synchro files to the desired SUMO format was a 

complex task. Synchro is a data-heavy software that reads and outputs comma-separated value 

(CSV) files. SUMO, on the other hand, reads and outputs extensible markup language (XML) 

files. Synchro is able to read and interpret XML files that are output from SUMO, but the inverse 

is not true. SUMO is unable to independently interpret CSV files from Synchro. Because of this 

incompatibility, a need existed to create conversion files and scripts that could translate data 

from Synchro’s CSV files into an XML format that SUMO could understand. For the 

conversion, the team used Python with the Pandas library. Figure 37 shows an overview of the 

conversion process used to move data from Synchro to SUMO. As shown in figure 37, Synchro 

and SUMO process and store road network data differently. To convert between the two 

software, both the geometry and phasing data needed to be translated. 

 

Figure 37. Diagram. Overview of the conversion process from Synchro to SUMO. 
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Geometry Conversion 

In both Synchro and SUMO, there are geometry files that contain information regarding the 

layout of the road network. In Synchro, data regarding the road network are stored in three CSV 

files which, as shown in figure 37, are called link data, node data, and lane group. Road networks 

in Synchro are made up of links, which are segments of the roadway, and nodes, which are 

intersections that connect various links. Nodes can be either signalized or unsignalized. 

The link data and lane group CSV files contain information regarding the links in the network, 

such as the number of lanes, the speed limit, and the volume flow rate. The node data CSV file 

contains information regarding the nodes in the network, including the type of control, phasing, 

and signal timing. SUMO has a somewhat different way of handling roadway geometry data. In 

SUMO, road networks are built using three XML files, which are referred to as edge data, 

junction data, and connection data. Thus, in SUMO, road networks are made up of edges and 

junctions. Edges in SUMO are the equivalent of links in Synchro. Junctions in SUMO are, in 

essence, the same as Synchro’s nodes. The edge data XML file contains information regarding 

lanes, and the connection data XML file identifies which edges and nodes are connected in the 

network. The node data XML file contains data regarding where edges connect. Thus, the 

conversion of geometry files from Synchro to SUMO is not a one-to-one conversion. Each 

SUMO geometry file is made up of data that are contained in more than one Synchro geometry 

file. In spite of this, the research team was able to create scripts to convert the geometry files for 

the DDI at I-285 and Ashford Dunwoody Rd. from Synchro to SUMO. Converting the geometry 

files was an important first step in developing the testing environment in SUMO. Figure 38 

shows the DDI at I-285 and Ashford Dunwoody Rd. in Synchro, and figure 39 shows the same 

DDI once converted to SUMO. 
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Figure 38. Diagram. DDI at I-285 and Ashford Dunwoody Rd. in Synchro. 

 

Figure 39. Diagram. DDI at I-285 and Ashford Dunwoody Rd. in SUMO. 

Signal Timing and Phasing Conversion 

For a road network in Synchro or in SUMO, there are phasing files that contain information 

regarding each signalized intersection’s timing plans. Again, SUMO and Synchro handle these 
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phasing files differently. In Synchro, the phasing data are stored in a CSV file called phasing 

data. The Synchro phasing information is presented in terms of a classic ring-barrier diagram. As 

shown in figure 40, a ring-barrier diagram in Synchro is a linear timeline that displays the 

relationship and timing of an intersection’s various phases. SUMO, as previously mentioned, 

handles phasing data in a different manner. In SUMO, the phasing data are stored in an XML file 

called traffic light data. Unlike Synchro, SUMO does not operate in terms of phases; rather, 

SUMO stores phasing data in terms of lanes. Figure 41 shows the timing scheme for an 

intersection in SUMO. Each of the positions in the “state” column represents a traffic signal for a 

single lane. The letter in that position describes the color of the light during that period (i.e., G 

means green, y means yellow, etc.). Each row in the table represents a different period of time 

for the intersection throughout the cycle. The duration (“dur” column) of each row describes the 

amount of time that time period lasts. For example, say the last letter of the string in the “state” 

column represents a northbound left-turn lane at some intersection. During the highlighted 

period, which lasts 4.70 seconds, the northbound left-turn lane light will be yellow. Synchro 

describes phasing and timing like a ring-barrier diagram, whereas SUMO describes it as the 

status of all signals around the entire intersection on a step-by-step basis. This poses an issue 

when converting phasing files from Synchro to SUMO. Despite these challenges, the research 

team was able to develop a script to successfully translate the Synchro phasing files to SUMO. 

 

Figure 40. Diagram. Ring-barrier diagram—the basis of Synchro’s phasing data. 
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Figure 41. Screen capture. Phasing scheme as portrayed in SUMO. 

PREPARATION OF TRAFFIC DATA FOR SIMULATION 

To test and train the prediction algorithm, the ability to input different traffic demand profiles 

into the SUMO simulation was essential. The historical data used for these purposes were pulled 

from GDOT’s ATSPM website. These traffic volume data are comprised of turning count 

movements at each intersection. The research team utilized one of SUMO’s built-in algorithms 

called “flowrouter.py.” This algorithm is able to calculate routes for all the vehicles within the 

simulation based on the turning count movements at detectors in the simulated network. To 

complete the simulation, the research team developed an XML file that describes where detectors 

are located within the system. The addition of these detectors to the simulation was imperative as 

they allowed traffic volumes to be input to the simulation using the “flowrouter.py” algorithm. 

After incorporating geometry, phasing, volume, and detector data, some issues still remained 

with the simulation. The research team had to manually tweak some factors, such as road 

priorities and allowable U-turns, to accurately simulate real-world conditions at the DDI. 
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TESTING AND TRAINING OF ALGORITHM USING SUMO 

The research team was able to successfully create a simulation environment in SUMO for the 

I-285 and Ashford Dunwoody DDI by converting the geometry and phasing files from Synchro 

to SUMO. The team was also able to convert available turning-movement data into vehicle 

routes that were required by SUMO. At this point, the research team was prepared to test and 

train the prediction algorithm using different traffic demand profiles.  

To test the algorithm using the SUMO simulation, four Case Studies with a day’s worth of 

atypical traffic flows were created as follows. Data between November 2020 and January 2021 

was collected for intersections 8171, 8172, 8173, and 8122. This data is represented as a large 

matrix containing turning movement counts across the four intersections over the three-month 

time period. First, a singular value decomposition of the measured traffic data was computed. 

Then, the singular values in this decomposition were randomly perturbed between plus or minus 

15 percent of their nominal value to create four different synthetic profiles.  The synthetic traffic 

profiles were selected from this newly generated synthetic data matrix. As a result, all synthetic 

profiles are within +/- 15% of the total volume on an average day. Each of the Case Studies are 

described below: 

Case Study 1 

The volume across the entire network for Case Study 1 is higher than average. The most 

substantial difference in volume between Case Study 1 and the average case occurs at the 

northernmost arterial (8173), with average volume differences ranging from 100 to 175 vehicles. 

Increased flow volume is given to this intersection’s northbound-through, southbound-through, 

and eastbound-right movements, all of which contribute to high through-traffic going south 
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through the DDI. Though less substantial, increased flow volume is also given to the 

northbound-through movements in the southernmost arterial (8122) and the southbound-through 

movement in the southern DDI intersection (8171), with average volume differences ranging 

from 60 to 80 vehicles. This Case Study has the highest overall volume of traffic as well as some 

of the most volatile traffic patterns, with volume measurements changing rapidly every 15 

minutes. Figure 42 shows a scatterplot of the traffic volumes for each movement over the course 

of the day for Case Study 1. Figure 43 shows a bar graph showing the difference in volume 

between the average day and the Case Study 1 day for each movement from 2:00-9:00PM. 

 

 

Figure 42. Scatter plot. Volume by Movement over day for Case Study 1. 
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Figure 43. Bar graph. Average Volume Difference by Movement for Case Study 1. 

 

Case Study 2 

Like in Case Study 1, the volume across the entire network for Case Study 2 is higher than 

average. However, the trends in the flows over time are more steady and less volatile than Case 

Study 1. Overall, compared with Case Study 1, the volume differences for each movement are 

more uniform and less drastic between each intersection. For example, in the northernmost 

arterial (8173), the northbound-through movement has the highest average difference in traffic 

but this difference is consistently less than 100 vehicles. Decreased flow volume is given to 

8173’s southbound movements, whose difference in volumes is similar to that of the north DDI 

intersection (8172) westbound-right movement, the south DDI intersection (8171) southbound-

through movement, and the southernmost arterial (8122) northbound-through movement, ranging 

from 35 to 45 cars. In Case Study 2, decreased flow volume is given to peripheral movements 

which contribute little to no vehicles to the main sources of traffic flow. Figure 44 shows a 
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scatterplot of the traffic volumes for each movement over the course of the day for Case Study 2. 

Figure 45 shows a bar graph showing the difference in volume between the average day and the 

Case Study 2 day for each movement from 2:00-9:00PM. 

 

Figure 44. Scatter plot. Volume by Movement over day for Case Study 2. 

 

Figure 45. Bar graph. Average Volume Difference by Movement for Case Study 2. 
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Case Study 3 

Like Case Studies 1 and 2, Case Study 3 generally has higher volumes throughout the day than 

the average day. The key difference between Case Study 3 and the prior two cases is that this 

case has a high volume volatility for each 15-minute interval. The volume changes are more 

drastic and less uniform than even Case Study 1. However, greatly increased flow volumes are 

given to the southern half of the network (8122 and 8171). This means that, while traffic patterns 

are very volatile, the average difference in volume between the northern arterial and the southern 

intersections are much closer together than they were in Case Studies 1 and 2. Overall, periphery 

movements behave similarly to the previous two cases. Figure 46 shows a scatterplot of the 

traffic volumes for each movement over the course of the day for Case Study 3. Figure 47 shows 

a bar graph showing the difference in volume between the average day and the Case Study 3 day 

for each movement from 2:00-9:00PM. 

 

Figure 46. Scatter plot. Volume by Movement over day for Case Study 3. 
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Figure 47. Bar graph. Average Volume Difference by Movement for Case Study 3. 

Case Study 4 

Case Study 4 is significantly different from the previous cases. Case Study 4 is a scenario where 

heavy traffic flows occur at the network’s periphery movements and slightly increased flow 

volumes are given to northbound- and southbound-through movements. On average, flows for all 

through-movements in the network are lower than they are for the average day. All of the 

westbound- and eastbound-movements contribute higher volumes than they would on an average 

day. The greatest increases in flow volumes are given to the northern DDI intersection’s (8172) 

westbound movement, representing traffic exiting I-285 westbound. The second greatest 

increases in flow volumes are given to the northernmost arterial (8173) eastbound-movements, 

with the eastbound right-movement contributing the most traffic from this direction. Flows for 

intersections in the southern half of the network are only slightly lower than average, while 

northbound-through and southbound-through traffic for 8173 ranges well below average. Figure 

48 shows a scatterplot of the traffic volumes for each movement over the course of the day for 
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Case Study 4. Figure 49 shows a bar graph showing the difference in volume between the 

average day and the Case Study 4 day for each movement from 2:00-9:00PM. 

 

Figure 48. Scatter plot. Volume by Movement over day for Case Study 4. 

 

Figure 49. Bar graph. Average Volume Difference by Movement for Case Study 4. 
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Figures 50 through 66 show plots of the traffic flow volumes over the day for each movement in 

the network for all Case Studies. 

 
Figure 50. Scatter plot. Volume over day by Case Study for 8173 Eastbound Left 

Movement. 

 

Figure 51. Scatter plot. Volume over day by Case Study for 8173 Eastbound Through-Left 

Movement. 
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Figure 52. Scatter plot. Volume over day by Case Study for 8173 Eastbound Right 

Movement. 

 

 

Figure 53. Scatter plot. Volume over day by Case Study for 8173 Westbound Left 

Movement. 
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Figure 54. Scatter plot. Volume over day by Case Study for 8173 Northbound Left 

Movement. 

 

 

Figure 55. Scatter plot. Volume over day by Case Study for 8173 Northbound Through 

Movement. 
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Figure 56. Scatter plot. Volume over day by Case Study for 8173 Southbound Left 

Movement. 

 

 

Figure 57. Scatter plot. Volume over day by Case Study for 8173 Southbound Through 

Movement. 
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Figure 58. Scatter plot. Volume over day by Case Study for 8172 Westbound Left 

Movement. 

 

 

Figure 59. Scatter plot. Volume over day by Case Study for 8172 Westbound Right 

Movement. 
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Figure 60. Scatter plot. Volume over day by Case Study for 8172 Northbound Through 

Movement. 

 

 

Figure 61. Scatter plot. Volume over day by Case Study for 8172 Southbound Through 

Movement. 
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Figure 62. Scatter plot. Volume over day by Case Study for 8172 Southbound Right 

Movement. 

 

 

Figure 63. Scatter plot. Volume over day by Case Study for 8171 Northbound Through 

Movement. 
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Figure 64. Scatter plot. Volume over day by Case Study for 8171 Southbound Through 

Movement. 

 

 

Figure 65. Scatter plot. Volume over day by Case Study for 8122 Northbound Through 

Movement. 
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Figure 66. Scatter plot. Volume over day by Case Study for 8122 Southbound Through 

Movement. 

Each of the Case Studies was used to assess the predictive accuracy of the algorithm. The traffic 

flow volumes from 12:00AM to 2:00PM were input into the algorithm. The algorithm was then 

used to predict the traffic flows from 2:00PM to 9:00PM. This procedure was used for each of 

the atypical volume Case Studies. Figure 67 shows the average predicted flows, the average 

actual flows, and the average day flows by movement for the period between 2:00PM and 

9:00PM for Case Study 1. Figure 68 shows the percentage error between the average predicted 

flow and the average actual flows for Case Study 1. 
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Figure 67. Bar graph. Average Flows by Movement for Prediction Period for Case Study 1. 

 

 

Figure 68. Bar Graph. Percentage Error between Actual and Predicted Flows for Case 

Study 1. 

Figure 69 shows the average predicted, average actual, and average day flows by movement for 

the period between 2:00PM and 9:00PM for Case Study 2. Figure 70 shows the percentage error 

between the average predicted and average actual flows for Case Study 2. 
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Figure 69. Bar Graph. Average Flows by Movement for Prediction Period for Case Study 

2. 

 

 

Figure 70. Bar Graph. Percentage Error between Actual and Predicted Flows for Case 

Study 2. 

Figure 71 shows the average predicted, average actual, and average day flows by movement for 

the period between 2:00PM and 9:00PM for Case Study 3. Figure 72 shows the percentage error 

between the average predicted and average actual flows for Case Study 3. 
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Figure 71. Bar Graph. Average Flows by Movement for Prediction Period for Case Study 

3. 

 

 

Figure 72. Bar Graph. Percentage Error between Actual and Predicted Flows for Case 

Study 3. 

Figure 73 shows the average predicted, average actual, and average day flows by movement for 

the period between 2:00PM and 9:00PM for Case Study 4. Figure 74 shows the percentage error 

between the average predicted and average actual flows for Case Study 4. 
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Figure 73. Bar Graph. Average Flows by Movement for Prediction Period for Case Study 

4. 

 

 

Figure 74. Bar Graph. Percentage Error between Actual and Predicted Flows for Case 

Study 4. 

Several conclusions can be made by analyzing Figures 67-74. By observing the charts, it is clear 

that the Case Study traffic flows are significantly different than the average day flows. It is also 
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evident that the algorithm is quite good at predicting future volumes (in this case, from 2:00PM 

to 9:00PM) using the volumes from earlier in the day. 

The simulation was used to determine the potential impact of the algorithm on the traffic flow 

within the network. The simulation was first run with the actual flows for each Case Study from 

2:00PM to 9:00 PM using the existing signal timings, as found in MaxTime. This simulation 

represents the scenario where atypical flows occur within the network, and the algorithm is not 

used. In this scenario, no signal timing changes are made. The simulation was also run with the 

actual flows for each Case Study from 2:00PM to 9:00 PM using updated, optimized signal 

timings, as found using Synchro. This simulation represents the scenario where the algorithm 

notices atypical flows within the network and predicts future traffic volumes. In this scenario, 

signal timings are changed appropriately by traffic engineers so that they are optimal for the 

predicted flows. For both of these simulations, SUMO’s edgeData function was used to measure 

the delay within the network. Table 12 contains the total and average delay for the unoptimized 

(control) and optimized signal timings, as well as the difference between the two. Use of the 

algorithm can save approximately 70 to 350 hours hours of delay, amounting to approximately 

$1,000 to $5,000 per day in travel time savings at the four intersections in the network when 

flow is atypical. 
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Table 12. Total Delay, Average Delay, and Travel Time Savings for each Case Study. 

Case 

Study 

Control Optimized Optimized - Control 

Total Delay 

(hr) 

Average 

Delay (s) 

Total 

Delay (hr) 

Average 

Delay (s) 

∆ Total 

Delay (hr) 

∆ Average 

Delay (s) 

Travel Time 

Savings  

(per Day)* 

1 4266 215.66 3983 201.37 283 14.29 $3,985.81 

2 3022 179.51 2677 159.02 345 20.49 $4,863.36 

3 3668 204.18 3594 200.04 75 4.15 $1,050.72 

4 4335 241.74 4258 237.44 77 4.29 $1,085.59 

*Hourly Travel Time 

Saving Rate 
$14.10 

 per the 2016 U.S. Department of Transportation Revised Value of    

Travel Time Guidance 
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 INTERACTIVE WEB ENGINE FOR PREDICTING TRAFFIC FLOW AND LEVEL OF 

SERVICE 

OVERVIEW OF THE TOOL 

This project involved the optimization of traffic flow at diverging diamond interchanges with 

ramp meters and neighboring intersections. The goal was to demonstrate the feasibility of a 

decision support tool that could notice unusual trends in the flow and notify GDOT that signal 

timing adjustments may be needed now or in the future; for example, an unusual AM peak 

period traffic profile may indicate to expect an unusual PM peak period profile. The utility of 

human–algorithm collaboration in traffic engineering is paramount. In an effort to close the gap 

between humans and computers in this collaboration, in Task V, the research team devised a 

prototype web engine that integrates the productivity of algorithmic predictions with human 

oversight and decision-making. The functionality of the web engine is as follows: 

1. The engine reads incoming traffic data from a network of intelligent infrastructure. 

2. Then, data-driven algorithms provide predictions of future traffic flows/level of service 

across the network. 

3. Lastly, the results of these predictions are displayed in a graphical user interface for use 

by traffic engineers. Suggestions for updated timing schemes and alerts are provided in 

this interface if necessary. Figure shows a screen capture of the web engine that has been 

developed for GDOT. The user interface presents predictions for each movement at each 

intersection and the corresponding level of service over the prediction horizon. As a 

prototype, this web engine receives traffic data regarding the DDIs at Ashford Dunwoody 

Rd. and Jimmy Carter Blvd. from the ATSPM website. This, of course, could be 

expanded in the future if real-time communication were viable between traffic 
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infrastructure and the web engine itself. An example of how the portal will appear to 

users is depicted in figure. Measured traffic flow over the course of the day is reported 

with solid lines for various turning movements. Dotted lines represent this algorithms’ 

prediction for traffic flow for the remaining portion of the day. The engine itself will be 

hosted in the cloud using computing resources allocated by the Georgia Institute of 

Technology and will be accessible via a web browser to GDOT. Additionally, the engine 

is being constructed in a modular framework in order to optimize the replacement of 

current data-driven algorithms with future generations. The research team believes that 

this prototype will set the standard for future human–algorithm collaboration in traffic 

engineering. 

 

Figure 75. Screen capture. Sample from the web engine. 
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